0 JBC
↳1 JBC2FIG (⇒)
↳2 JBCTerminationGraph
↳3 FIGtoITRSProof (⇒)
↳4 IDP
↳5 IDPNonInfProof (⇒)
↳6 IDP
↳7 IDependencyGraphProof (⇔)
↳8 IDP
↳9 UsableRulesProof (⇔)
↳10 IDP
↳11 IDPNonInfProof (⇒)
↳12 IDP
↳13 IDependencyGraphProof (⇔)
↳14 TRUE
public class AProVEMathRecursive {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
power(x, y);
}
public static int power(int base, int exponent) {
if (exponent <= 0) {
return 1;
} else if (exponent == 1) {
return base;
} else if (base == 2) {
return base << (exponent-1);
} else if (exponent % 2 == 1) {
return base * power(base, exponent-1);
} else {
int halfPower = power(base, exponent/2);
return halfPower * halfPower;
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
if (args.length <= index) {
return 0;
}
String string = args[index];
index++;
if (string == null) {
return 0;
}
return string.length();
}
}
Generated 65 rules for P and 80 rules for R.
Combined rules. Obtained 6 rules for P and 13 rules for R.
Filtered ground terms:
574_0_power_GT(x1, x2, x3, x4) → 574_0_power_GT(x2, x3, x4)
Cond_574_0_power_GT5(x1, x2, x3, x4, x5) → Cond_574_0_power_GT5(x1, x3, x4, x5)
Cond_574_0_power_GT4(x1, x2, x3, x4, x5) → Cond_574_0_power_GT4(x1, x3, x4, x5)
Cond_574_0_power_GT3(x1, x2, x3, x4, x5) → Cond_574_0_power_GT3(x1, x3, x4, x5)
Cond_574_0_power_GT2(x1, x2, x3, x4, x5) → Cond_574_0_power_GT2(x1, x3, x4, x5)
Cond_574_0_power_GT1(x1, x2, x3, x4, x5) → Cond_574_0_power_GT1(x1, x3, x4, x5)
Cond_574_0_power_GT(x1, x2, x3, x4, x5) → Cond_574_0_power_GT(x1, x3, x4, x5)
895_0_power_Return(x1, x2, x3) → 895_0_power_Return(x2, x3)
Cond_868_1_power_InvokeMethod2(x1, x2, x3, x4, x5, x6, x7) → Cond_868_1_power_InvokeMethod2(x1, x3, x4, x5, x6, x7)
951_0_power_Return(x1) → 951_0_power_Return
Cond_868_1_power_InvokeMethod(x1, x2, x3, x4, x5, x6, x7) → Cond_868_1_power_InvokeMethod(x1, x2, x3, x4, x5, x6)
644_0_power_Return(x1, x2, x3, x4) → 644_0_power_Return(x2, x4)
Cond_840_1_power_InvokeMethod(x1, x2, x3, x4) → Cond_840_1_power_InvokeMethod(x1, x2, x3)
969_0_power_Return(x1, x2, x3) → 969_0_power_Return(x2, x3)
Cond_855_1_power_InvokeMethod2(x1, x2, x3, x4, x5, x6, x7) → Cond_855_1_power_InvokeMethod2(x1, x3, x4, x5, x6, x7)
1056_0_power_Return(x1) → 1056_0_power_Return
Cond_855_1_power_InvokeMethod(x1, x2, x3, x4, x5, x6, x7) → Cond_855_1_power_InvokeMethod(x1, x2, x3, x4, x5, x6)
587_0_power_Return(x1, x2, x3) → 587_0_power_Return(x2)
Filtered duplicate args:
574_0_power_GT(x1, x2, x3) → 574_0_power_GT(x1, x3)
Cond_574_0_power_GT5(x1, x2, x3, x4) → Cond_574_0_power_GT5(x1, x2, x4)
868_1_power_InvokeMethod(x1, x2, x3, x4, x5, x6) → 868_1_power_InvokeMethod(x1, x3, x5, x6)
Cond_574_0_power_GT4(x1, x2, x3, x4) → Cond_574_0_power_GT4(x1, x2, x4)
Cond_574_0_power_GT3(x1, x2, x3, x4) → Cond_574_0_power_GT3(x1, x2, x4)
Cond_574_0_power_GT2(x1, x2, x3, x4) → Cond_574_0_power_GT2(x1, x2, x4)
855_1_power_InvokeMethod(x1, x2, x3, x4, x5, x6) → 855_1_power_InvokeMethod(x1, x3, x5, x6)
Cond_574_0_power_GT1(x1, x2, x3, x4) → Cond_574_0_power_GT1(x1, x2, x4)
Cond_574_0_power_GT(x1, x2, x3, x4) → Cond_574_0_power_GT(x1, x2, x4)
Cond_868_1_power_InvokeMethod2(x1, x2, x3, x4, x5, x6) → Cond_868_1_power_InvokeMethod2(x1, x3, x5, x6)
Cond_868_1_power_InvokeMethod1(x1, x2, x3, x4, x5, x6, x7) → Cond_868_1_power_InvokeMethod1(x1, x2, x4, x6, x7)
Cond_868_1_power_InvokeMethod(x1, x2, x3, x4, x5, x6) → Cond_868_1_power_InvokeMethod(x1, x2, x4, x6)
644_0_power_Return(x1, x2) → 644_0_power_Return(x2)
Cond_855_1_power_InvokeMethod2(x1, x2, x3, x4, x5, x6) → Cond_855_1_power_InvokeMethod2(x1, x3, x5, x6)
Cond_855_1_power_InvokeMethod1(x1, x2, x3, x4, x5, x6, x7) → Cond_855_1_power_InvokeMethod1(x1, x2, x4, x6, x7)
Cond_855_1_power_InvokeMethod(x1, x2, x3, x4, x5, x6) → Cond_855_1_power_InvokeMethod(x1, x2, x4, x6)
Filtered unneeded arguments:
Cond_855_1_power_InvokeMethod2(x1, x2, x3, x4) → Cond_855_1_power_InvokeMethod2(x1, x2, x3)
Cond_868_1_power_InvokeMethod2(x1, x2, x3, x4) → Cond_868_1_power_InvokeMethod2(x1, x2, x3)
Combined rules. Obtained 6 rules for P and 13 rules for R.
Finished conversion. Obtained 6 rules for P and 13 rules for R. System has predefined symbols.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(0) -> (1), if ((x1[0] > 1 && !(x0[0] = 2) && 0 = x1[0] % 2 →* TRUE)∧(x0[0] →* x0[1])∧(x1[0] →* x1[1]))
(1) -> (0), if ((x0[1] →* x0[0])∧(x1[1] / 2 →* x1[0]))
(1) -> (2), if ((x0[1] →* x0[2])∧(x1[1] / 2 →* x1[2]))
(1) -> (4), if ((x0[1] →* x0[4])∧(x1[1] / 2 →* x1[4]))
(1) -> (5), if ((x0[1] →* x0[5])∧(x1[1] / 2 →* x1[5]))
(1) -> (7), if ((x0[1] →* x0[7])∧(x1[1] / 2 →* x1[7]))
(1) -> (9), if ((x0[1] →* x0[9])∧(x1[1] / 2 →* x1[9]))
(2) -> (3), if ((x1[2] > 0 && !(x1[2] = 1) && !(x0[2] = 2) && 1 = x1[2] % 2 →* TRUE)∧(x0[2] →* x0[3])∧(x1[2] →* x1[3]))
(3) -> (0), if ((x0[3] →* x0[0])∧(x1[3] - 1 →* x1[0]))
(3) -> (2), if ((x0[3] →* x0[2])∧(x1[3] - 1 →* x1[2]))
(3) -> (4), if ((x0[3] →* x0[4])∧(x1[3] - 1 →* x1[4]))
(3) -> (5), if ((x0[3] →* x0[5])∧(x1[3] - 1 →* x1[5]))
(3) -> (7), if ((x0[3] →* x0[7])∧(x1[3] - 1 →* x1[7]))
(3) -> (9), if ((x0[3] →* x0[9])∧(x1[3] - 1 →* x1[9]))
(4) -> (1), if ((x1[4] > 1 && !(x0[4] = 2) && !(x1[4] % 2 = 1) →* TRUE)∧(x0[4] →* x0[1])∧(x1[4] →* x1[1]))
(5) -> (6), if ((x1[5] > 1 && !(x0[5] = 2) && 0 = x1[5] % 2 →* TRUE)∧(x0[5] →* x0[6])∧(x1[5] →* x1[6]))
(6) -> (0), if ((x0[6] →* x0[0])∧(x1[6] / 2 →* x1[0]))
(6) -> (2), if ((x0[6] →* x0[2])∧(x1[6] / 2 →* x1[2]))
(6) -> (4), if ((x0[6] →* x0[4])∧(x1[6] / 2 →* x1[4]))
(6) -> (5), if ((x0[6] →* x0[5])∧(x1[6] / 2 →* x1[5]))
(6) -> (7), if ((x0[6] →* x0[7])∧(x1[6] / 2 →* x1[7]))
(6) -> (9), if ((x0[6] →* x0[9])∧(x1[6] / 2 →* x1[9]))
(7) -> (8), if ((x1[7] > 0 && !(x1[7] = 1) && !(x0[7] = 2) && 1 = x1[7] % 2 →* TRUE)∧(x0[7] →* x0[8])∧(x1[7] →* x1[8]))
(8) -> (0), if ((x0[8] →* x0[0])∧(x1[8] - 1 →* x1[0]))
(8) -> (2), if ((x0[8] →* x0[2])∧(x1[8] - 1 →* x1[2]))
(8) -> (4), if ((x0[8] →* x0[4])∧(x1[8] - 1 →* x1[4]))
(8) -> (5), if ((x0[8] →* x0[5])∧(x1[8] - 1 →* x1[5]))
(8) -> (7), if ((x0[8] →* x0[7])∧(x1[8] - 1 →* x1[7]))
(8) -> (9), if ((x0[8] →* x0[9])∧(x1[8] - 1 →* x1[9]))
(9) -> (6), if ((x1[9] > 1 && !(x0[9] = 2) && !(x1[9] % 2 = 1) →* TRUE)∧(x0[9] →* x0[6])∧(x1[9] →* x1[6]))
(1) (&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2)))=TRUE∧x0[0]=x0[1]∧x1[0]=x1[1] ⇒ 574_0_POWER_GT(x0[0], x1[0])≥NonInfC∧574_0_POWER_GT(x0[0], x1[0])≥COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])∧(UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥))
(2) (>(x1[0], 1)=TRUE∧>=(0, %(x1[0], 2))=TRUE∧<=(0, %(x1[0], 2))=TRUE∧<(x0[0], 2)=TRUE ⇒ 574_0_POWER_GT(x0[0], x1[0])≥NonInfC∧574_0_POWER_GT(x0[0], x1[0])≥COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])∧(UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥))
(3) (>(x1[0], 1)=TRUE∧>=(0, %(x1[0], 2))=TRUE∧<=(0, %(x1[0], 2))=TRUE∧>(x0[0], 2)=TRUE ⇒ 574_0_POWER_GT(x0[0], x1[0])≥NonInfC∧574_0_POWER_GT(x0[0], x1[0])≥COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])∧(UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥))
(4) (x1[0] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧[1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_101] + [bni_101]x1[0] ≥ 0∧[(-1)bso_102] ≥ 0)
(5) (x1[0] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧x0[0] + [-3] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_101] + [bni_101]x1[0] ≥ 0∧[(-1)bso_102] ≥ 0)
(6) (x1[0] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧[1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_101] + [bni_101]x1[0] ≥ 0∧[(-1)bso_102] ≥ 0)
(7) (x1[0] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧x0[0] + [-3] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_101] + [bni_101]x1[0] ≥ 0∧[(-1)bso_102] ≥ 0)
(8) (x1[0] + [-2] ≥ 0∧[1] + [-1]x0[0] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_101] + [bni_101]x1[0] ≥ 0∧[(-1)bso_102] ≥ 0)
(9) (x1[0] + [-2] ≥ 0∧x0[0] + [-3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_101] + [bni_101]x1[0] ≥ 0∧[(-1)bso_102] ≥ 0)
(10) (x1[0] ≥ 0∧[1] + [-1]x0[0] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_101 + (2)bni_101] + [bni_101]x1[0] ≥ 0∧[(-1)bso_102] ≥ 0)
(11) (x1[0] ≥ 0∧x0[0] + [-3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_101 + (2)bni_101] + [bni_101]x1[0] ≥ 0∧[(-1)bso_102] ≥ 0)
(12) (x1[0] ≥ 0∧[1] + [-1]x0[0] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_101 + (2)bni_101] + [bni_101]x1[0] ≥ 0∧[(-1)bso_102] ≥ 0)
(13) (x1[0] ≥ 0∧[1] + x0[0] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_101 + (2)bni_101] + [bni_101]x1[0] ≥ 0∧[(-1)bso_102] ≥ 0)
(14) (x1[0] ≥ 0∧[1] + [-1]x0[0] ≥ 0∧x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_101 + (2)bni_101] + [bni_101]x1[0] ≥ 0∧[(-1)bso_102] ≥ 0)
(15) (x1[0] ≥ 0∧[1] + x0[0] ≥ 0∧x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_101 + (2)bni_101] + [bni_101]x1[0] ≥ 0∧[(-1)bso_102] ≥ 0)
(16) (x1[0] ≥ 0∧x0[0] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_101 + (2)bni_101] + [bni_101]x1[0] ≥ 0∧[(-1)bso_102] ≥ 0)
(17) (x1[0] ≥ 0∧x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_101 + (2)bni_101] + [bni_101]x1[0] ≥ 0∧[(-1)bso_102] ≥ 0)
(18) (&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2)))=TRUE∧x0[0]=x0[1]∧x1[0]=x1[1] ⇒ COND_574_0_POWER_GT(TRUE, x0[1], x1[1])≥NonInfC∧COND_574_0_POWER_GT(TRUE, x0[1], x1[1])≥574_0_POWER_GT(x0[1], /(x1[1], 2))∧(UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥))
(19) (>(x1[0], 1)=TRUE∧>=(0, %(x1[0], 2))=TRUE∧<=(0, %(x1[0], 2))=TRUE∧<(x0[0], 2)=TRUE ⇒ COND_574_0_POWER_GT(TRUE, x0[0], x1[0])≥NonInfC∧COND_574_0_POWER_GT(TRUE, x0[0], x1[0])≥574_0_POWER_GT(x0[0], /(x1[0], 2))∧(UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥))
(20) (>(x1[0], 1)=TRUE∧>=(0, %(x1[0], 2))=TRUE∧<=(0, %(x1[0], 2))=TRUE∧>(x0[0], 2)=TRUE ⇒ COND_574_0_POWER_GT(TRUE, x0[0], x1[0])≥NonInfC∧COND_574_0_POWER_GT(TRUE, x0[0], x1[0])≥574_0_POWER_GT(x0[0], /(x1[0], 2))∧(UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥))
(21) (x1[0] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧[1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_103 + (-1)Bound*bni_103] + [bni_103]x1[0] ≥ 0∧[(-1)bso_107] + x1[0] + [-1]max{x1[0], [-1]x1[0]} ≥ 0)
(22) (x1[0] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧x0[0] + [-3] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_103 + (-1)Bound*bni_103] + [bni_103]x1[0] ≥ 0∧[(-1)bso_107] + x1[0] + [-1]max{x1[0], [-1]x1[0]} ≥ 0)
(23) (x1[0] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧[1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_103 + (-1)Bound*bni_103] + [bni_103]x1[0] ≥ 0∧[(-1)bso_107] + x1[0] + [-1]max{x1[0], [-1]x1[0]} ≥ 0)
(24) (x1[0] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧x0[0] + [-3] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_103 + (-1)Bound*bni_103] + [bni_103]x1[0] ≥ 0∧[(-1)bso_107] + x1[0] + [-1]max{x1[0], [-1]x1[0]} ≥ 0)
(25) (x1[0] + [-2] ≥ 0∧[1] + [-1]x0[0] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[2]x1[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_103 + (-1)Bound*bni_103] + [bni_103]x1[0] ≥ 0∧[(-1)bso_107] ≥ 0)
(26) (x1[0] + [-2] ≥ 0∧x0[0] + [-3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[2]x1[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_103 + (-1)Bound*bni_103] + [bni_103]x1[0] ≥ 0∧[(-1)bso_107] ≥ 0)
(27) (x1[0] ≥ 0∧[1] + [-1]x0[0] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[0] ≥ 0∧[(-1)bso_107] ≥ 0)
(28) (x1[0] ≥ 0∧x0[0] + [-3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[0] ≥ 0∧[(-1)bso_107] ≥ 0)
(29) (x1[0] ≥ 0∧[1] + [-1]x0[0] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[0] ≥ 0∧[(-1)bso_107] ≥ 0)
(30) (x1[0] ≥ 0∧[1] + x0[0] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[0] ≥ 0∧[(-1)bso_107] ≥ 0)
(31) (x1[0] ≥ 0∧[1] + [-1]x0[0] ≥ 0∧x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[0] ≥ 0∧[(-1)bso_107] ≥ 0)
(32) (x1[0] ≥ 0∧[1] + x0[0] ≥ 0∧x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[0] ≥ 0∧[(-1)bso_107] ≥ 0)
(33) (x1[0] ≥ 0∧x0[0] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[0] ≥ 0∧[(-1)bso_107] ≥ 0)
(34) (x1[0] ≥ 0∧x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[0] ≥ 0∧[(-1)bso_107] ≥ 0)
(35) (&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1)))=TRUE∧x0[4]=x0[1]∧x1[4]=x1[1] ⇒ COND_574_0_POWER_GT(TRUE, x0[1], x1[1])≥NonInfC∧COND_574_0_POWER_GT(TRUE, x0[1], x1[1])≥574_0_POWER_GT(x0[1], /(x1[1], 2))∧(UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥))
(36) (>(x1[4], 1)=TRUE∧<(%(x1[4], 2), 1)=TRUE∧<(x0[4], 2)=TRUE ⇒ COND_574_0_POWER_GT(TRUE, x0[4], x1[4])≥NonInfC∧COND_574_0_POWER_GT(TRUE, x0[4], x1[4])≥574_0_POWER_GT(x0[4], /(x1[4], 2))∧(UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥))
(37) (>(x1[4], 1)=TRUE∧<(%(x1[4], 2), 1)=TRUE∧>(x0[4], 2)=TRUE ⇒ COND_574_0_POWER_GT(TRUE, x0[4], x1[4])≥NonInfC∧COND_574_0_POWER_GT(TRUE, x0[4], x1[4])≥574_0_POWER_GT(x0[4], /(x1[4], 2))∧(UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥))
(38) (x1[4] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧[1] + [-1]x0[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] + x1[4] + [-1]max{x1[4], [-1]x1[4]} ≥ 0)
(39) (x1[4] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧x0[4] + [-3] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] + x1[4] + [-1]max{x1[4], [-1]x1[4]} ≥ 0)
(40) (x1[4] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧[1] + [-1]x0[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] + x1[4] + [-1]max{x1[4], [-1]x1[4]} ≥ 0)
(41) (x1[4] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧x0[4] + [-3] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] + x1[4] + [-1]max{x1[4], [-1]x1[4]} ≥ 0)
(43) (x1[4] + [-2] ≥ 0∧max{[2], [-2]} + [-2] ≥ 0∧[1] + [-1]x0[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] + x1[4] + [-1]max{x1[4], [-1]x1[4]} ≥ 0)
(45) (x1[4] + [-2] ≥ 0∧max{[2], [-2]} + [-2] ≥ 0∧x0[4] + [-3] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] + x1[4] + [-1]max{x1[4], [-1]x1[4]} ≥ 0)
(46) (x1[4] + [-2] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2]x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] ≥ 0)
(47) (x1[4] + [-2] ≥ 0∧x0[4] + [-3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2]x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] ≥ 0)
(48) (x1[4] + [-2] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧[2]x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] ≥ 0)
(49) (x1[4] + [-2] ≥ 0∧x0[4] + [-3] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧[2]x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] ≥ 0)
(50) (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] ≥ 0)
(51) (x1[4] ≥ 0∧x0[4] + [-3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] ≥ 0)
(52) (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧[4] + [2]x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] ≥ 0)
(53) (x1[4] ≥ 0∧x0[4] + [-3] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧[4] + [2]x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] ≥ 0)
(54) (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[4] ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] ≥ 0)
(55) (x1[4] ≥ 0∧[1] + x0[4] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[4] ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] ≥ 0)
(56) (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] ≥ 0)
(57) (x1[4] ≥ 0∧[1] + x0[4] ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] ≥ 0)
(58) (x1[4] ≥ 0∧x0[4] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] ≥ 0)
(59) (x1[4] ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] ≥ 0)
(60) (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧[4] + [2]x1[4] ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] ≥ 0)
(61) (x1[4] ≥ 0∧[1] + x0[4] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧[4] + [2]x1[4] ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] ≥ 0)
(62) (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧0 ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0∧[2] + x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] ≥ 0)
(63) (x1[4] ≥ 0∧[1] + x0[4] ≥ 0∧0 ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0∧[2] + x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] ≥ 0)
(64) (x1[4] ≥ 0∧x0[4] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧[4] + [2]x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] ≥ 0)
(65) (x1[4] ≥ 0∧x0[4] ≥ 0∧0 ≥ 0∧[1] ≥ 0∧[2] + x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] ≥ 0)
(66) (&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2)))=TRUE∧x0[2]=x0[3]∧x1[2]=x1[3] ⇒ 574_0_POWER_GT(x0[2], x1[2])≥NonInfC∧574_0_POWER_GT(x0[2], x1[2])≥COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])∧(UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥))
(67) (>=(1, %(x1[2], 2))=TRUE∧<=(1, %(x1[2], 2))=TRUE∧>(x1[2], 0)=TRUE∧<(x0[2], 2)=TRUE∧<(x1[2], 1)=TRUE ⇒ 574_0_POWER_GT(x0[2], x1[2])≥NonInfC∧574_0_POWER_GT(x0[2], x1[2])≥COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])∧(UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥))
(68) (>=(1, %(x1[2], 2))=TRUE∧<=(1, %(x1[2], 2))=TRUE∧>(x1[2], 0)=TRUE∧<(x0[2], 2)=TRUE∧>(x1[2], 1)=TRUE ⇒ 574_0_POWER_GT(x0[2], x1[2])≥NonInfC∧574_0_POWER_GT(x0[2], x1[2])≥COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])∧(UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥))
(69) ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧[-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)Bound*bni_108] + [bni_108]x1[2] ≥ 0∧[(-1)bso_109] ≥ 0)
(70) ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)Bound*bni_108] + [bni_108]x1[2] ≥ 0∧[(-1)bso_109] ≥ 0)
(71) ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧[-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)Bound*bni_108] + [bni_108]x1[2] ≥ 0∧[(-1)bso_109] ≥ 0)
(72) ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)Bound*bni_108] + [bni_108]x1[2] ≥ 0∧[(-1)bso_109] ≥ 0)
(74) ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧x0[2] + [-3] ≥ 0∧[-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)Bound*bni_108] + [bni_108]x1[2] ≥ 0∧[(-1)bso_109] ≥ 0)
(76) ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧x0[2] + [-3] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)Bound*bni_108] + [bni_108]x1[2] ≥ 0∧[(-1)bso_109] ≥ 0)
(77) (x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] + [-2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)Bound*bni_108] + [bni_108]x1[2] ≥ 0∧[(-1)bso_109] ≥ 0)
(78) (x1[2] + [-1] ≥ 0∧x0[2] + [-3] ≥ 0∧x1[2] + [-2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)Bound*bni_108] + [bni_108]x1[2] ≥ 0∧[(-1)bso_109] ≥ 0)
(79) (x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧[-1] + x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)Bound*bni_108 + bni_108] + [bni_108]x1[2] ≥ 0∧[(-1)bso_109] ≥ 0)
(80) (x1[2] ≥ 0∧x0[2] + [-3] ≥ 0∧[-1] + x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)Bound*bni_108 + bni_108] + [bni_108]x1[2] ≥ 0∧[(-1)bso_109] ≥ 0)
(81) ([1] + x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)Bound*bni_108 + (2)bni_108] + [bni_108]x1[2] ≥ 0∧[(-1)bso_109] ≥ 0)
(82) ([1] + x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)Bound*bni_108 + (2)bni_108] + [bni_108]x1[2] ≥ 0∧[(-1)bso_109] ≥ 0)
(83) ([1] + x1[2] ≥ 0∧[1] + x0[2] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)Bound*bni_108 + (2)bni_108] + [bni_108]x1[2] ≥ 0∧[(-1)bso_109] ≥ 0)
(84) ([1] + x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)Bound*bni_108 + (2)bni_108] + [bni_108]x1[2] ≥ 0∧[(-1)bso_109] ≥ 0)
(85) ([1] + x1[2] ≥ 0∧[1] + x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)Bound*bni_108 + (2)bni_108] + [bni_108]x1[2] ≥ 0∧[(-1)bso_109] ≥ 0)
(86) ([1] + x1[2] ≥ 0∧x0[2] + [-3] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)Bound*bni_108 + (2)bni_108] + [bni_108]x1[2] ≥ 0∧[(-1)bso_109] ≥ 0)
(87) ([1] + x1[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)Bound*bni_108 + (2)bni_108] + [bni_108]x1[2] ≥ 0∧[(-1)bso_109] ≥ 0)
(88) ([1] + x1[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)Bound*bni_108 + (2)bni_108] + [bni_108]x1[2] ≥ 0∧[(-1)bso_109] ≥ 0)
(89) (&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2)))=TRUE∧x0[2]=x0[3]∧x1[2]=x1[3] ⇒ COND_574_0_POWER_GT1(TRUE, x0[3], x1[3])≥NonInfC∧COND_574_0_POWER_GT1(TRUE, x0[3], x1[3])≥574_0_POWER_GT(x0[3], -(x1[3], 1))∧(UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥))
(90) (>=(1, %(x1[2], 2))=TRUE∧<=(1, %(x1[2], 2))=TRUE∧>(x1[2], 0)=TRUE∧<(x0[2], 2)=TRUE∧<(x1[2], 1)=TRUE ⇒ COND_574_0_POWER_GT1(TRUE, x0[2], x1[2])≥NonInfC∧COND_574_0_POWER_GT1(TRUE, x0[2], x1[2])≥574_0_POWER_GT(x0[2], -(x1[2], 1))∧(UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥))
(91) (>=(1, %(x1[2], 2))=TRUE∧<=(1, %(x1[2], 2))=TRUE∧>(x1[2], 0)=TRUE∧<(x0[2], 2)=TRUE∧>(x1[2], 1)=TRUE ⇒ COND_574_0_POWER_GT1(TRUE, x0[2], x1[2])≥NonInfC∧COND_574_0_POWER_GT1(TRUE, x0[2], x1[2])≥574_0_POWER_GT(x0[2], -(x1[2], 1))∧(UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥))
(92) ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧[-1]x1[2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_110 + (-1)Bound*bni_110] + [bni_110]x1[2] ≥ 0∧[(-1)bso_111] ≥ 0)
(93) ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_110 + (-1)Bound*bni_110] + [bni_110]x1[2] ≥ 0∧[(-1)bso_111] ≥ 0)
(94) ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧[-1]x1[2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_110 + (-1)Bound*bni_110] + [bni_110]x1[2] ≥ 0∧[(-1)bso_111] ≥ 0)
(95) ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_110 + (-1)Bound*bni_110] + [bni_110]x1[2] ≥ 0∧[(-1)bso_111] ≥ 0)
(97) ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧x0[2] + [-3] ≥ 0∧[-1]x1[2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_110 + (-1)Bound*bni_110] + [bni_110]x1[2] ≥ 0∧[(-1)bso_111] ≥ 0)
(99) ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧x0[2] + [-3] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_110 + (-1)Bound*bni_110] + [bni_110]x1[2] ≥ 0∧[(-1)bso_111] ≥ 0)
(100) (x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] + [-2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_110 + (-1)Bound*bni_110] + [bni_110]x1[2] ≥ 0∧[(-1)bso_111] ≥ 0)
(101) (x1[2] + [-1] ≥ 0∧x0[2] + [-3] ≥ 0∧x1[2] + [-2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_110 + (-1)Bound*bni_110] + [bni_110]x1[2] ≥ 0∧[(-1)bso_111] ≥ 0)
(102) (x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧[-1] + x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)Bound*bni_110] + [bni_110]x1[2] ≥ 0∧[(-1)bso_111] ≥ 0)
(103) (x1[2] ≥ 0∧x0[2] + [-3] ≥ 0∧[-1] + x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)Bound*bni_110] + [bni_110]x1[2] ≥ 0∧[(-1)bso_111] ≥ 0)
(104) ([1] + x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_110 + (-1)Bound*bni_110] + [bni_110]x1[2] ≥ 0∧[(-1)bso_111] ≥ 0)
(105) ([1] + x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_110 + (-1)Bound*bni_110] + [bni_110]x1[2] ≥ 0∧[(-1)bso_111] ≥ 0)
(106) ([1] + x1[2] ≥ 0∧[1] + x0[2] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_110 + (-1)Bound*bni_110] + [bni_110]x1[2] ≥ 0∧[(-1)bso_111] ≥ 0)
(107) ([1] + x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_110 + (-1)Bound*bni_110] + [bni_110]x1[2] ≥ 0∧[(-1)bso_111] ≥ 0)
(108) ([1] + x1[2] ≥ 0∧[1] + x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_110 + (-1)Bound*bni_110] + [bni_110]x1[2] ≥ 0∧[(-1)bso_111] ≥ 0)
(109) ([1] + x1[2] ≥ 0∧x0[2] + [-3] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_110 + (-1)Bound*bni_110] + [bni_110]x1[2] ≥ 0∧[(-1)bso_111] ≥ 0)
(110) ([1] + x1[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_110 + (-1)Bound*bni_110] + [bni_110]x1[2] ≥ 0∧[(-1)bso_111] ≥ 0)
(111) ([1] + x1[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_110 + (-1)Bound*bni_110] + [bni_110]x1[2] ≥ 0∧[(-1)bso_111] ≥ 0)
(112) (&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1)))=TRUE∧x0[4]=x0[1]∧x1[4]=x1[1] ⇒ 574_0_POWER_GT(x0[4], x1[4])≥NonInfC∧574_0_POWER_GT(x0[4], x1[4])≥COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])∧(UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥))
(113) (>(x1[4], 1)=TRUE∧<(%(x1[4], 2), 1)=TRUE∧<(x0[4], 2)=TRUE ⇒ 574_0_POWER_GT(x0[4], x1[4])≥NonInfC∧574_0_POWER_GT(x0[4], x1[4])≥COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])∧(UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥))
(114) (>(x1[4], 1)=TRUE∧<(%(x1[4], 2), 1)=TRUE∧>(x0[4], 2)=TRUE ⇒ 574_0_POWER_GT(x0[4], x1[4])≥NonInfC∧574_0_POWER_GT(x0[4], x1[4])≥COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])∧(UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥))
(115) (x1[4] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧[1] + [-1]x0[4] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)
(116) (x1[4] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧x0[4] + [-3] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)
(117) (x1[4] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧[1] + [-1]x0[4] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)
(118) (x1[4] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧x0[4] + [-3] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)
(120) (x1[4] + [-2] ≥ 0∧max{[2], [-2]} + [-2] ≥ 0∧[1] + [-1]x0[4] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)
(122) (x1[4] + [-2] ≥ 0∧max{[2], [-2]} + [-2] ≥ 0∧x0[4] + [-3] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)
(123) (x1[4] + [-2] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧[4] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)
(124) (x1[4] + [-2] ≥ 0∧x0[4] + [-3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)
(125) (x1[4] + [-2] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧[4] ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)
(126) (x1[4] + [-2] ≥ 0∧x0[4] + [-3] ≥ 0∧[4] ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)
(127) (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧[4] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112 + (2)bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)
(128) (x1[4] ≥ 0∧x0[4] + [-3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112 + (2)bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)
(129) (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧[4] ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112 + (2)bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)
(130) (x1[4] ≥ 0∧x0[4] + [-3] ≥ 0∧[4] ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112 + (2)bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)
(131) (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112 + (2)bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)
(132) (x1[4] ≥ 0∧[1] + x0[4] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112 + (2)bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)
(133) (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112 + (2)bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)
(134) (x1[4] ≥ 0∧[1] + x0[4] ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112 + (2)bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)
(135) (x1[4] ≥ 0∧x0[4] ≥ 0∧[4] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112 + (2)bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)
(136) (x1[4] ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112 + (2)bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)
(137) (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112 + (2)bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)
(138) (x1[4] ≥ 0∧[1] + x0[4] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112 + (2)bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)
(139) (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧0 ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112 + (2)bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)
(140) (x1[4] ≥ 0∧[1] + x0[4] ≥ 0∧0 ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112 + (2)bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)
(141) (x1[4] ≥ 0∧x0[4] ≥ 0∧[4] ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112 + (2)bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)
(142) (x1[4] ≥ 0∧x0[4] ≥ 0∧0 ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112 + (2)bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)
(143) (&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2)))=TRUE∧x0[5]=x0[6]∧x1[5]=x1[6] ⇒ 574_0_POWER_GT(x0[5], x1[5])≥NonInfC∧574_0_POWER_GT(x0[5], x1[5])≥COND_574_0_POWER_GT3(&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2))), x0[5], x1[5])∧(UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2))), x0[5], x1[5])), ≥))
(144) (>(x1[5], 1)=TRUE∧>=(0, %(x1[5], 2))=TRUE∧<=(0, %(x1[5], 2))=TRUE∧<(x0[5], 2)=TRUE ⇒ 574_0_POWER_GT(x0[5], x1[5])≥NonInfC∧574_0_POWER_GT(x0[5], x1[5])≥COND_574_0_POWER_GT3(&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2))), x0[5], x1[5])∧(UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2))), x0[5], x1[5])), ≥))
(145) (>(x1[5], 1)=TRUE∧>=(0, %(x1[5], 2))=TRUE∧<=(0, %(x1[5], 2))=TRUE∧>(x0[5], 2)=TRUE ⇒ 574_0_POWER_GT(x0[5], x1[5])≥NonInfC∧574_0_POWER_GT(x0[5], x1[5])≥COND_574_0_POWER_GT3(&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2))), x0[5], x1[5])∧(UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2))), x0[5], x1[5])), ≥))
(146) (x1[5] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧[1] + [-1]x0[5] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2))), x0[5], x1[5])), ≥)∧[(-1)Bound*bni_114] + [bni_114]x1[5] ≥ 0∧[1 + (-1)bso_115] ≥ 0)
(147) (x1[5] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧x0[5] + [-3] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2))), x0[5], x1[5])), ≥)∧[(-1)Bound*bni_114] + [bni_114]x1[5] ≥ 0∧[1 + (-1)bso_115] ≥ 0)
(148) (x1[5] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧[1] + [-1]x0[5] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2))), x0[5], x1[5])), ≥)∧[(-1)Bound*bni_114] + [bni_114]x1[5] ≥ 0∧[1 + (-1)bso_115] ≥ 0)
(149) (x1[5] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧x0[5] + [-3] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2))), x0[5], x1[5])), ≥)∧[(-1)Bound*bni_114] + [bni_114]x1[5] ≥ 0∧[1 + (-1)bso_115] ≥ 0)
(150) (x1[5] + [-2] ≥ 0∧[1] + [-1]x0[5] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2))), x0[5], x1[5])), ≥)∧[(-1)Bound*bni_114] + [bni_114]x1[5] ≥ 0∧[1 + (-1)bso_115] ≥ 0)
(151) (x1[5] + [-2] ≥ 0∧x0[5] + [-3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2))), x0[5], x1[5])), ≥)∧[(-1)Bound*bni_114] + [bni_114]x1[5] ≥ 0∧[1 + (-1)bso_115] ≥ 0)
(152) (x1[5] ≥ 0∧[1] + [-1]x0[5] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2))), x0[5], x1[5])), ≥)∧[(-1)Bound*bni_114 + (2)bni_114] + [bni_114]x1[5] ≥ 0∧[1 + (-1)bso_115] ≥ 0)
(153) (x1[5] ≥ 0∧x0[5] + [-3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2))), x0[5], x1[5])), ≥)∧[(-1)Bound*bni_114 + (2)bni_114] + [bni_114]x1[5] ≥ 0∧[1 + (-1)bso_115] ≥ 0)
(154) (x1[5] ≥ 0∧[1] + [-1]x0[5] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧x0[5] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2))), x0[5], x1[5])), ≥)∧[(-1)Bound*bni_114 + (2)bni_114] + [bni_114]x1[5] ≥ 0∧[1 + (-1)bso_115] ≥ 0)
(155) (x1[5] ≥ 0∧[1] + x0[5] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧x0[5] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2))), x0[5], x1[5])), ≥)∧[(-1)Bound*bni_114 + (2)bni_114] + [bni_114]x1[5] ≥ 0∧[1 + (-1)bso_115] ≥ 0)
(156) (x1[5] ≥ 0∧[1] + [-1]x0[5] ≥ 0∧x0[5] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2))), x0[5], x1[5])), ≥)∧[(-1)Bound*bni_114 + (2)bni_114] + [bni_114]x1[5] ≥ 0∧[1 + (-1)bso_115] ≥ 0)
(157) (x1[5] ≥ 0∧[1] + x0[5] ≥ 0∧x0[5] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2))), x0[5], x1[5])), ≥)∧[(-1)Bound*bni_114 + (2)bni_114] + [bni_114]x1[5] ≥ 0∧[1 + (-1)bso_115] ≥ 0)
(158) (x1[5] ≥ 0∧x0[5] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2))), x0[5], x1[5])), ≥)∧[(-1)Bound*bni_114 + (2)bni_114] + [bni_114]x1[5] ≥ 0∧[1 + (-1)bso_115] ≥ 0)
(159) (x1[5] ≥ 0∧x0[5] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2))), x0[5], x1[5])), ≥)∧[(-1)Bound*bni_114 + (2)bni_114] + [bni_114]x1[5] ≥ 0∧[1 + (-1)bso_115] ≥ 0)
(160) (&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2)))=TRUE∧x0[5]=x0[6]∧x1[5]=x1[6] ⇒ COND_574_0_POWER_GT3(TRUE, x0[6], x1[6])≥NonInfC∧COND_574_0_POWER_GT3(TRUE, x0[6], x1[6])≥574_0_POWER_GT(x0[6], /(x1[6], 2))∧(UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥))
(161) (>(x1[5], 1)=TRUE∧>=(0, %(x1[5], 2))=TRUE∧<=(0, %(x1[5], 2))=TRUE∧<(x0[5], 2)=TRUE ⇒ COND_574_0_POWER_GT3(TRUE, x0[5], x1[5])≥NonInfC∧COND_574_0_POWER_GT3(TRUE, x0[5], x1[5])≥574_0_POWER_GT(x0[5], /(x1[5], 2))∧(UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥))
(162) (>(x1[5], 1)=TRUE∧>=(0, %(x1[5], 2))=TRUE∧<=(0, %(x1[5], 2))=TRUE∧>(x0[5], 2)=TRUE ⇒ COND_574_0_POWER_GT3(TRUE, x0[5], x1[5])≥NonInfC∧COND_574_0_POWER_GT3(TRUE, x0[5], x1[5])≥574_0_POWER_GT(x0[5], /(x1[5], 2))∧(UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥))
(163) (x1[5] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧[1] + [-1]x0[5] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[(-1)bni_116 + (-1)Bound*bni_116] + [bni_116]x1[5] ≥ 0∧[(-1)bso_117] + x1[5] + [-1]max{x1[5], [-1]x1[5]} ≥ 0)
(164) (x1[5] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧x0[5] + [-3] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[(-1)bni_116 + (-1)Bound*bni_116] + [bni_116]x1[5] ≥ 0∧[(-1)bso_117] + x1[5] + [-1]max{x1[5], [-1]x1[5]} ≥ 0)
(165) (x1[5] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧[1] + [-1]x0[5] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[(-1)bni_116 + (-1)Bound*bni_116] + [bni_116]x1[5] ≥ 0∧[(-1)bso_117] + x1[5] + [-1]max{x1[5], [-1]x1[5]} ≥ 0)
(166) (x1[5] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧x0[5] + [-3] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[(-1)bni_116 + (-1)Bound*bni_116] + [bni_116]x1[5] ≥ 0∧[(-1)bso_117] + x1[5] + [-1]max{x1[5], [-1]x1[5]} ≥ 0)
(167) (x1[5] + [-2] ≥ 0∧[1] + [-1]x0[5] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[2]x1[5] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[(-1)bni_116 + (-1)Bound*bni_116] + [bni_116]x1[5] ≥ 0∧[(-1)bso_117] ≥ 0)
(168) (x1[5] + [-2] ≥ 0∧x0[5] + [-3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[2]x1[5] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[(-1)bni_116 + (-1)Bound*bni_116] + [bni_116]x1[5] ≥ 0∧[(-1)bso_117] ≥ 0)
(169) (x1[5] ≥ 0∧[1] + [-1]x0[5] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[5] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[5] ≥ 0∧[(-1)bso_117] ≥ 0)
(170) (x1[5] ≥ 0∧x0[5] + [-3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[5] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[5] ≥ 0∧[(-1)bso_117] ≥ 0)
(171) (x1[5] ≥ 0∧[1] + [-1]x0[5] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[5] ≥ 0∧x0[5] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[5] ≥ 0∧[(-1)bso_117] ≥ 0)
(172) (x1[5] ≥ 0∧[1] + x0[5] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[5] ≥ 0∧x0[5] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[5] ≥ 0∧[(-1)bso_117] ≥ 0)
(173) (x1[5] ≥ 0∧[1] + [-1]x0[5] ≥ 0∧x0[5] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[5] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[5] ≥ 0∧[(-1)bso_117] ≥ 0)
(174) (x1[5] ≥ 0∧[1] + x0[5] ≥ 0∧x0[5] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[5] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[5] ≥ 0∧[(-1)bso_117] ≥ 0)
(175) (x1[5] ≥ 0∧x0[5] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[5] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[5] ≥ 0∧[(-1)bso_117] ≥ 0)
(176) (x1[5] ≥ 0∧x0[5] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[5] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[5] ≥ 0∧[(-1)bso_117] ≥ 0)
(177) (&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1)))=TRUE∧x0[9]=x0[6]∧x1[9]=x1[6] ⇒ COND_574_0_POWER_GT3(TRUE, x0[6], x1[6])≥NonInfC∧COND_574_0_POWER_GT3(TRUE, x0[6], x1[6])≥574_0_POWER_GT(x0[6], /(x1[6], 2))∧(UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥))
(178) (>(x1[9], 1)=TRUE∧<(%(x1[9], 2), 1)=TRUE∧<(x0[9], 2)=TRUE ⇒ COND_574_0_POWER_GT3(TRUE, x0[9], x1[9])≥NonInfC∧COND_574_0_POWER_GT3(TRUE, x0[9], x1[9])≥574_0_POWER_GT(x0[9], /(x1[9], 2))∧(UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥))
(179) (>(x1[9], 1)=TRUE∧<(%(x1[9], 2), 1)=TRUE∧>(x0[9], 2)=TRUE ⇒ COND_574_0_POWER_GT3(TRUE, x0[9], x1[9])≥NonInfC∧COND_574_0_POWER_GT3(TRUE, x0[9], x1[9])≥574_0_POWER_GT(x0[9], /(x1[9], 2))∧(UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥))
(180) (x1[9] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧[1] + [-1]x0[9] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[(-1)bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] + x1[9] + [-1]max{x1[9], [-1]x1[9]} ≥ 0)
(181) (x1[9] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧x0[9] + [-3] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[(-1)bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] + x1[9] + [-1]max{x1[9], [-1]x1[9]} ≥ 0)
(182) (x1[9] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧[1] + [-1]x0[9] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[(-1)bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] + x1[9] + [-1]max{x1[9], [-1]x1[9]} ≥ 0)
(183) (x1[9] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧x0[9] + [-3] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[(-1)bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] + x1[9] + [-1]max{x1[9], [-1]x1[9]} ≥ 0)
(185) (x1[9] + [-2] ≥ 0∧max{[2], [-2]} + [-2] ≥ 0∧[1] + [-1]x0[9] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[(-1)bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] + x1[9] + [-1]max{x1[9], [-1]x1[9]} ≥ 0)
(187) (x1[9] + [-2] ≥ 0∧max{[2], [-2]} + [-2] ≥ 0∧x0[9] + [-3] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[(-1)bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] + x1[9] + [-1]max{x1[9], [-1]x1[9]} ≥ 0)
(188) (x1[9] + [-2] ≥ 0∧[1] + [-1]x0[9] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2]x1[9] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[(-1)bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] ≥ 0)
(189) (x1[9] + [-2] ≥ 0∧x0[9] + [-3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2]x1[9] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[(-1)bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] ≥ 0)
(190) (x1[9] + [-2] ≥ 0∧[1] + [-1]x0[9] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧[2]x1[9] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[(-1)bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] ≥ 0)
(191) (x1[9] + [-2] ≥ 0∧x0[9] + [-3] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧[2]x1[9] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[(-1)bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] ≥ 0)
(192) (x1[9] ≥ 0∧[1] + [-1]x0[9] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[9] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] ≥ 0)
(193) (x1[9] ≥ 0∧x0[9] + [-3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[9] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] ≥ 0)
(194) (x1[9] ≥ 0∧[1] + [-1]x0[9] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧[4] + [2]x1[9] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] ≥ 0)
(195) (x1[9] ≥ 0∧x0[9] + [-3] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧[4] + [2]x1[9] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] ≥ 0)
(196) (x1[9] ≥ 0∧[1] + [-1]x0[9] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[9] ≥ 0∧x0[9] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] ≥ 0)
(197) (x1[9] ≥ 0∧[1] + x0[9] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[9] ≥ 0∧x0[9] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] ≥ 0)
(198) (x1[9] ≥ 0∧[1] + [-1]x0[9] ≥ 0∧x0[9] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[9] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] ≥ 0)
(199) (x1[9] ≥ 0∧[1] + x0[9] ≥ 0∧x0[9] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[9] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] ≥ 0)
(200) (x1[9] ≥ 0∧x0[9] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[9] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] ≥ 0)
(201) (x1[9] ≥ 0∧x0[9] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[9] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] ≥ 0)
(202) (x1[9] ≥ 0∧[1] + [-1]x0[9] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧[4] + [2]x1[9] ≥ 0∧x0[9] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] ≥ 0)
(203) (x1[9] ≥ 0∧[1] + x0[9] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧[4] + [2]x1[9] ≥ 0∧x0[9] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] ≥ 0)
(204) (x1[9] ≥ 0∧[1] + [-1]x0[9] ≥ 0∧0 ≥ 0∧x0[9] ≥ 0∧[1] ≥ 0∧[2] + x1[9] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] ≥ 0)
(205) (x1[9] ≥ 0∧[1] + x0[9] ≥ 0∧0 ≥ 0∧x0[9] ≥ 0∧[1] ≥ 0∧[2] + x1[9] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] ≥ 0)
(206) (x1[9] ≥ 0∧x0[9] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧[4] + [2]x1[9] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] ≥ 0)
(207) (x1[9] ≥ 0∧x0[9] ≥ 0∧0 ≥ 0∧[1] ≥ 0∧[2] + x1[9] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] ≥ 0)
(208) (&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2)))=TRUE∧x0[7]=x0[8]∧x1[7]=x1[8] ⇒ 574_0_POWER_GT(x0[7], x1[7])≥NonInfC∧574_0_POWER_GT(x0[7], x1[7])≥COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])∧(UIncreasing(COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])), ≥))
(209) (>=(1, %(x1[7], 2))=TRUE∧<=(1, %(x1[7], 2))=TRUE∧>(x1[7], 0)=TRUE∧<(x0[7], 2)=TRUE∧<(x1[7], 1)=TRUE ⇒ 574_0_POWER_GT(x0[7], x1[7])≥NonInfC∧574_0_POWER_GT(x0[7], x1[7])≥COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])∧(UIncreasing(COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])), ≥))
(210) (>=(1, %(x1[7], 2))=TRUE∧<=(1, %(x1[7], 2))=TRUE∧>(x1[7], 0)=TRUE∧<(x0[7], 2)=TRUE∧>(x1[7], 1)=TRUE ⇒ 574_0_POWER_GT(x0[7], x1[7])≥NonInfC∧574_0_POWER_GT(x0[7], x1[7])≥COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])∧(UIncreasing(COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])), ≥))
(211) ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[7] + [-1] ≥ 0∧[1] + [-1]x0[7] ≥ 0∧[-1]x1[7] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])), ≥)∧[(-1)Bound*bni_118] + [bni_118]x1[7] ≥ 0∧[1 + (-1)bso_119] ≥ 0)
(212) ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[7] + [-1] ≥ 0∧[1] + [-1]x0[7] ≥ 0∧x1[7] + [-2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])), ≥)∧[(-1)Bound*bni_118] + [bni_118]x1[7] ≥ 0∧[1 + (-1)bso_119] ≥ 0)
(213) ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[7] + [-1] ≥ 0∧[1] + [-1]x0[7] ≥ 0∧[-1]x1[7] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])), ≥)∧[(-1)Bound*bni_118] + [bni_118]x1[7] ≥ 0∧[1 + (-1)bso_119] ≥ 0)
(214) ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[7] + [-1] ≥ 0∧[1] + [-1]x0[7] ≥ 0∧x1[7] + [-2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])), ≥)∧[(-1)Bound*bni_118] + [bni_118]x1[7] ≥ 0∧[1 + (-1)bso_119] ≥ 0)
(216) ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[7] + [-1] ≥ 0∧x0[7] + [-3] ≥ 0∧[-1]x1[7] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])), ≥)∧[(-1)Bound*bni_118] + [bni_118]x1[7] ≥ 0∧[1 + (-1)bso_119] ≥ 0)
(218) ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[7] + [-1] ≥ 0∧x0[7] + [-3] ≥ 0∧x1[7] + [-2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])), ≥)∧[(-1)Bound*bni_118] + [bni_118]x1[7] ≥ 0∧[1 + (-1)bso_119] ≥ 0)
(219) (x1[7] + [-1] ≥ 0∧[1] + [-1]x0[7] ≥ 0∧x1[7] + [-2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])), ≥)∧[(-1)Bound*bni_118] + [bni_118]x1[7] ≥ 0∧[1 + (-1)bso_119] ≥ 0)
(220) (x1[7] + [-1] ≥ 0∧x0[7] + [-3] ≥ 0∧x1[7] + [-2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])), ≥)∧[(-1)Bound*bni_118] + [bni_118]x1[7] ≥ 0∧[1 + (-1)bso_119] ≥ 0)
(221) (x1[7] ≥ 0∧[1] + [-1]x0[7] ≥ 0∧[-1] + x1[7] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])), ≥)∧[(-1)Bound*bni_118 + bni_118] + [bni_118]x1[7] ≥ 0∧[1 + (-1)bso_119] ≥ 0)
(222) (x1[7] ≥ 0∧x0[7] + [-3] ≥ 0∧[-1] + x1[7] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])), ≥)∧[(-1)Bound*bni_118 + bni_118] + [bni_118]x1[7] ≥ 0∧[1 + (-1)bso_119] ≥ 0)
(223) ([1] + x1[7] ≥ 0∧[1] + [-1]x0[7] ≥ 0∧x1[7] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])), ≥)∧[(-1)Bound*bni_118 + (2)bni_118] + [bni_118]x1[7] ≥ 0∧[1 + (-1)bso_119] ≥ 0)
(224) ([1] + x1[7] ≥ 0∧[1] + [-1]x0[7] ≥ 0∧x1[7] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0∧x0[7] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])), ≥)∧[(-1)Bound*bni_118 + (2)bni_118] + [bni_118]x1[7] ≥ 0∧[1 + (-1)bso_119] ≥ 0)
(225) ([1] + x1[7] ≥ 0∧[1] + x0[7] ≥ 0∧x1[7] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0∧x0[7] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])), ≥)∧[(-1)Bound*bni_118 + (2)bni_118] + [bni_118]x1[7] ≥ 0∧[1 + (-1)bso_119] ≥ 0)
(226) ([1] + x1[7] ≥ 0∧[1] + [-1]x0[7] ≥ 0∧x1[7] ≥ 0∧[1] ≥ 0∧x0[7] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])), ≥)∧[(-1)Bound*bni_118 + (2)bni_118] + [bni_118]x1[7] ≥ 0∧[1 + (-1)bso_119] ≥ 0)
(227) ([1] + x1[7] ≥ 0∧[1] + x0[7] ≥ 0∧x1[7] ≥ 0∧[1] ≥ 0∧x0[7] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])), ≥)∧[(-1)Bound*bni_118 + (2)bni_118] + [bni_118]x1[7] ≥ 0∧[1 + (-1)bso_119] ≥ 0)
(228) ([1] + x1[7] ≥ 0∧x0[7] + [-3] ≥ 0∧x1[7] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])), ≥)∧[(-1)Bound*bni_118 + (2)bni_118] + [bni_118]x1[7] ≥ 0∧[1 + (-1)bso_119] ≥ 0)
(229) ([1] + x1[7] ≥ 0∧x0[7] ≥ 0∧x1[7] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])), ≥)∧[(-1)Bound*bni_118 + (2)bni_118] + [bni_118]x1[7] ≥ 0∧[1 + (-1)bso_119] ≥ 0)
(230) ([1] + x1[7] ≥ 0∧x0[7] ≥ 0∧x1[7] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])), ≥)∧[(-1)Bound*bni_118 + (2)bni_118] + [bni_118]x1[7] ≥ 0∧[1 + (-1)bso_119] ≥ 0)
(231) (&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2)))=TRUE∧x0[7]=x0[8]∧x1[7]=x1[8] ⇒ COND_574_0_POWER_GT4(TRUE, x0[8], x1[8])≥NonInfC∧COND_574_0_POWER_GT4(TRUE, x0[8], x1[8])≥574_0_POWER_GT(x0[8], -(x1[8], 1))∧(UIncreasing(574_0_POWER_GT(x0[8], -(x1[8], 1))), ≥))
(232) (>=(1, %(x1[7], 2))=TRUE∧<=(1, %(x1[7], 2))=TRUE∧>(x1[7], 0)=TRUE∧<(x0[7], 2)=TRUE∧<(x1[7], 1)=TRUE ⇒ COND_574_0_POWER_GT4(TRUE, x0[7], x1[7])≥NonInfC∧COND_574_0_POWER_GT4(TRUE, x0[7], x1[7])≥574_0_POWER_GT(x0[7], -(x1[7], 1))∧(UIncreasing(574_0_POWER_GT(x0[8], -(x1[8], 1))), ≥))
(233) (>=(1, %(x1[7], 2))=TRUE∧<=(1, %(x1[7], 2))=TRUE∧>(x1[7], 0)=TRUE∧<(x0[7], 2)=TRUE∧>(x1[7], 1)=TRUE ⇒ COND_574_0_POWER_GT4(TRUE, x0[7], x1[7])≥NonInfC∧COND_574_0_POWER_GT4(TRUE, x0[7], x1[7])≥574_0_POWER_GT(x0[7], -(x1[7], 1))∧(UIncreasing(574_0_POWER_GT(x0[8], -(x1[8], 1))), ≥))
(234) ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[7] + [-1] ≥ 0∧[1] + [-1]x0[7] ≥ 0∧[-1]x1[7] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[8], -(x1[8], 1))), ≥)∧[(-1)bni_120 + (-1)Bound*bni_120] + [bni_120]x1[7] ≥ 0∧[(-1)bso_121] ≥ 0)
(235) ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[7] + [-1] ≥ 0∧[1] + [-1]x0[7] ≥ 0∧x1[7] + [-2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[8], -(x1[8], 1))), ≥)∧[(-1)bni_120 + (-1)Bound*bni_120] + [bni_120]x1[7] ≥ 0∧[(-1)bso_121] ≥ 0)
(236) ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[7] + [-1] ≥ 0∧[1] + [-1]x0[7] ≥ 0∧[-1]x1[7] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[8], -(x1[8], 1))), ≥)∧[(-1)bni_120 + (-1)Bound*bni_120] + [bni_120]x1[7] ≥ 0∧[(-1)bso_121] ≥ 0)
(237) ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[7] + [-1] ≥ 0∧[1] + [-1]x0[7] ≥ 0∧x1[7] + [-2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[8], -(x1[8], 1))), ≥)∧[(-1)bni_120 + (-1)Bound*bni_120] + [bni_120]x1[7] ≥ 0∧[(-1)bso_121] ≥ 0)
(239) ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[7] + [-1] ≥ 0∧x0[7] + [-3] ≥ 0∧[-1]x1[7] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[8], -(x1[8], 1))), ≥)∧[(-1)bni_120 + (-1)Bound*bni_120] + [bni_120]x1[7] ≥ 0∧[(-1)bso_121] ≥ 0)
(241) ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[7] + [-1] ≥ 0∧x0[7] + [-3] ≥ 0∧x1[7] + [-2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[8], -(x1[8], 1))), ≥)∧[(-1)bni_120 + (-1)Bound*bni_120] + [bni_120]x1[7] ≥ 0∧[(-1)bso_121] ≥ 0)
(242) (x1[7] + [-1] ≥ 0∧[1] + [-1]x0[7] ≥ 0∧x1[7] + [-2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[8], -(x1[8], 1))), ≥)∧[(-1)bni_120 + (-1)Bound*bni_120] + [bni_120]x1[7] ≥ 0∧[(-1)bso_121] ≥ 0)
(243) (x1[7] + [-1] ≥ 0∧x0[7] + [-3] ≥ 0∧x1[7] + [-2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[8], -(x1[8], 1))), ≥)∧[(-1)bni_120 + (-1)Bound*bni_120] + [bni_120]x1[7] ≥ 0∧[(-1)bso_121] ≥ 0)
(244) (x1[7] ≥ 0∧[1] + [-1]x0[7] ≥ 0∧[-1] + x1[7] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[8], -(x1[8], 1))), ≥)∧[(-1)Bound*bni_120] + [bni_120]x1[7] ≥ 0∧[(-1)bso_121] ≥ 0)
(245) (x1[7] ≥ 0∧x0[7] + [-3] ≥ 0∧[-1] + x1[7] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[8], -(x1[8], 1))), ≥)∧[(-1)Bound*bni_120] + [bni_120]x1[7] ≥ 0∧[(-1)bso_121] ≥ 0)
(246) ([1] + x1[7] ≥ 0∧[1] + [-1]x0[7] ≥ 0∧x1[7] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[8], -(x1[8], 1))), ≥)∧[bni_120 + (-1)Bound*bni_120] + [bni_120]x1[7] ≥ 0∧[(-1)bso_121] ≥ 0)
(247) ([1] + x1[7] ≥ 0∧[1] + [-1]x0[7] ≥ 0∧x1[7] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0∧x0[7] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[8], -(x1[8], 1))), ≥)∧[bni_120 + (-1)Bound*bni_120] + [bni_120]x1[7] ≥ 0∧[(-1)bso_121] ≥ 0)
(248) ([1] + x1[7] ≥ 0∧[1] + x0[7] ≥ 0∧x1[7] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0∧x0[7] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[8], -(x1[8], 1))), ≥)∧[bni_120 + (-1)Bound*bni_120] + [bni_120]x1[7] ≥ 0∧[(-1)bso_121] ≥ 0)
(249) ([1] + x1[7] ≥ 0∧[1] + [-1]x0[7] ≥ 0∧x1[7] ≥ 0∧[1] ≥ 0∧x0[7] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[8], -(x1[8], 1))), ≥)∧[bni_120 + (-1)Bound*bni_120] + [bni_120]x1[7] ≥ 0∧[(-1)bso_121] ≥ 0)
(250) ([1] + x1[7] ≥ 0∧[1] + x0[7] ≥ 0∧x1[7] ≥ 0∧[1] ≥ 0∧x0[7] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[8], -(x1[8], 1))), ≥)∧[bni_120 + (-1)Bound*bni_120] + [bni_120]x1[7] ≥ 0∧[(-1)bso_121] ≥ 0)
(251) ([1] + x1[7] ≥ 0∧x0[7] + [-3] ≥ 0∧x1[7] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[8], -(x1[8], 1))), ≥)∧[bni_120 + (-1)Bound*bni_120] + [bni_120]x1[7] ≥ 0∧[(-1)bso_121] ≥ 0)
(252) ([1] + x1[7] ≥ 0∧x0[7] ≥ 0∧x1[7] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[8], -(x1[8], 1))), ≥)∧[bni_120 + (-1)Bound*bni_120] + [bni_120]x1[7] ≥ 0∧[(-1)bso_121] ≥ 0)
(253) ([1] + x1[7] ≥ 0∧x0[7] ≥ 0∧x1[7] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[8], -(x1[8], 1))), ≥)∧[bni_120 + (-1)Bound*bni_120] + [bni_120]x1[7] ≥ 0∧[(-1)bso_121] ≥ 0)
(254) (&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1)))=TRUE∧x0[9]=x0[6]∧x1[9]=x1[6] ⇒ 574_0_POWER_GT(x0[9], x1[9])≥NonInfC∧574_0_POWER_GT(x0[9], x1[9])≥COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])∧(UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥))
(255) (>(x1[9], 1)=TRUE∧<(%(x1[9], 2), 1)=TRUE∧<(x0[9], 2)=TRUE ⇒ 574_0_POWER_GT(x0[9], x1[9])≥NonInfC∧574_0_POWER_GT(x0[9], x1[9])≥COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])∧(UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥))
(256) (>(x1[9], 1)=TRUE∧<(%(x1[9], 2), 1)=TRUE∧>(x0[9], 2)=TRUE ⇒ 574_0_POWER_GT(x0[9], x1[9])≥NonInfC∧574_0_POWER_GT(x0[9], x1[9])≥COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])∧(UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥))
(257) (x1[9] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧[1] + [-1]x0[9] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)
(258) (x1[9] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧x0[9] + [-3] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)
(259) (x1[9] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧[1] + [-1]x0[9] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)
(260) (x1[9] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧x0[9] + [-3] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)
(262) (x1[9] + [-2] ≥ 0∧max{[2], [-2]} + [-2] ≥ 0∧[1] + [-1]x0[9] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)
(264) (x1[9] + [-2] ≥ 0∧max{[2], [-2]} + [-2] ≥ 0∧x0[9] + [-3] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)
(265) (x1[9] + [-2] ≥ 0∧[1] + [-1]x0[9] ≥ 0∧[4] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)
(266) (x1[9] + [-2] ≥ 0∧x0[9] + [-3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)
(267) (x1[9] + [-2] ≥ 0∧[1] + [-1]x0[9] ≥ 0∧[4] ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)
(268) (x1[9] + [-2] ≥ 0∧x0[9] + [-3] ≥ 0∧[4] ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)
(269) (x1[9] ≥ 0∧[1] + [-1]x0[9] ≥ 0∧[4] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122 + (2)bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)
(270) (x1[9] ≥ 0∧x0[9] + [-3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122 + (2)bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)
(271) (x1[9] ≥ 0∧[1] + [-1]x0[9] ≥ 0∧[4] ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122 + (2)bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)
(272) (x1[9] ≥ 0∧x0[9] + [-3] ≥ 0∧[4] ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122 + (2)bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)
(273) (x1[9] ≥ 0∧[1] + [-1]x0[9] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧x0[9] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122 + (2)bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)
(274) (x1[9] ≥ 0∧[1] + x0[9] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧x0[9] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122 + (2)bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)
(275) (x1[9] ≥ 0∧[1] + [-1]x0[9] ≥ 0∧x0[9] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122 + (2)bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)
(276) (x1[9] ≥ 0∧[1] + x0[9] ≥ 0∧x0[9] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122 + (2)bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)
(277) (x1[9] ≥ 0∧x0[9] ≥ 0∧[4] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122 + (2)bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)
(278) (x1[9] ≥ 0∧x0[9] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122 + (2)bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)
(279) (x1[9] ≥ 0∧[1] + [-1]x0[9] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧x0[9] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122 + (2)bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)
(280) (x1[9] ≥ 0∧[1] + x0[9] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧x0[9] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122 + (2)bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)
(281) (x1[9] ≥ 0∧[1] + [-1]x0[9] ≥ 0∧0 ≥ 0∧x0[9] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122 + (2)bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)
(282) (x1[9] ≥ 0∧[1] + x0[9] ≥ 0∧0 ≥ 0∧x0[9] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122 + (2)bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)
(283) (x1[9] ≥ 0∧x0[9] ≥ 0∧[4] ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122 + (2)bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)
(284) (x1[9] ≥ 0∧x0[9] ≥ 0∧0 ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122 + (2)bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = [3]
POL(574_0_power_GT(x1, x2)) = [-1] + [-1]x2 + [-1]x1
POL(0) = 0
POL(587_0_power_Return(x1)) = [-1] + [-1]x1
POL(827_1_power_InvokeMethod(x1, x2, x3)) = [-1] + [-1]x3 + [-1]x2 + [-1]x1
POL(644_0_power_Return(x1)) = [-1] + [-1]x1
POL(1) = [1]
POL(1056_0_power_Return) = [-1]
POL(969_0_power_Return(x1, x2)) = [-1] + [-1]x2 + [-1]x1
POL(855_1_power_InvokeMethod(x1, x2, x3, x4)) = [-1] + [-1]x4 + [-1]x3 + [-1]x2 + [-1]x1
POL(Cond_855_1_power_InvokeMethod(x1, x2, x3, x4, x5)) = [-1] + [-1]x5 + [-1]x4 + [-1]x3 + [-1]x2 + [-1]x1
POL(<=(x1, x2)) = [-1]
POL(Cond_855_1_power_InvokeMethod1(x1, x2, x3, x4, x5)) = [-1] + [-1]x5 + [-1]x4 + [-1]x3 + [-1]x2 + [-1]x1
POL(Cond_855_1_power_InvokeMethod2(x1, x2, x3, x4, x5)) = [-1] + [-1]x5 + [-1]x4 + [-1]x3 + [-1]x2 + [-1]x1
POL(840_1_power_InvokeMethod(x1, x2, x3)) = [-1] + [-1]x3 + [-1]x2 + [-1]x1
POL(Cond_840_1_power_InvokeMethod(x1, x2, x3, x4)) = [-1] + [-1]x4 + [-1]x3 + [-1]x2 + [-1]x1
POL(>(x1, x2)) = [-1]
POL(951_0_power_Return) = [-1]
POL(895_0_power_Return(x1, x2)) = [-1] + [-1]x2 + [-1]x1
POL(868_1_power_InvokeMethod(x1, x2, x3, x4)) = [-1] + [-1]x4 + [-1]x3 + [-1]x2 + [-1]x1
POL(Cond_868_1_power_InvokeMethod(x1, x2, x3, x4, x5)) = [-1] + [-1]x5 + [-1]x4 + [-1]x3 + [-1]x2 + [-1]x1
POL(Cond_868_1_power_InvokeMethod1(x1, x2, x3, x4, x5)) = [-1] + [-1]x5 + [-1]x4 + [-1]x3 + [-1]x2 + [-1]x1
POL(Cond_868_1_power_InvokeMethod2(x1, x2, x3, x4, x5)) = [-1] + [-1]x5 + [-1]x4 + [-1]x3 + [-1]x2 + [-1]x1
POL(574_0_POWER_GT(x1, x2)) = x2
POL(COND_574_0_POWER_GT(x1, x2, x3)) = [-1] + x3 + [-1]x1
POL(&&(x1, x2)) = [-1]
POL(!(x1)) = [-1]
POL(=(x1, x2)) = [-1]
POL(2) = [2]
POL(COND_574_0_POWER_GT1(x1, x2, x3)) = [-1] + x3 + [-1]x1
POL(-(x1, x2)) = x1 + [-1]x2
POL(COND_574_0_POWER_GT3(x1, x2, x3)) = [-1] + x3
POL(COND_574_0_POWER_GT4(x1, x2, x3)) = [-1] + x3
Polynomial Interpretations with Context Sensitive Arithemetic Replacement
POL(TermCSAR-Mode @ Context)
POL(%(x1, 2)-1 @ {}) = min{x2, [-1]x2}
POL(%(x1, 2)1 @ {}) = max{x2, [-1]x2}
POL(/(x1, 2)1 @ {574_0_POWER_GT_2/1}) = max{x1, [-1]x1} + [-1]
574_0_POWER_GT(x0[5], x1[5]) → COND_574_0_POWER_GT3(&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2))), x0[5], x1[5])
574_0_POWER_GT(x0[7], x1[7]) → COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])
574_0_POWER_GT(x0[9], x1[9]) → COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])
574_0_POWER_GT(x0[0], x1[0]) → COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])
COND_574_0_POWER_GT(TRUE, x0[1], x1[1]) → 574_0_POWER_GT(x0[1], /(x1[1], 2))
574_0_POWER_GT(x0[2], x1[2]) → COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])
COND_574_0_POWER_GT1(TRUE, x0[3], x1[3]) → 574_0_POWER_GT(x0[3], -(x1[3], 1))
574_0_POWER_GT(x0[4], x1[4]) → COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])
574_0_POWER_GT(x0[5], x1[5]) → COND_574_0_POWER_GT3(&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2))), x0[5], x1[5])
COND_574_0_POWER_GT3(TRUE, x0[6], x1[6]) → 574_0_POWER_GT(x0[6], /(x1[6], 2))
574_0_POWER_GT(x0[7], x1[7]) → COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])
COND_574_0_POWER_GT4(TRUE, x0[8], x1[8]) → 574_0_POWER_GT(x0[8], -(x1[8], 1))
574_0_POWER_GT(x0[9], x1[9]) → COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])
574_0_POWER_GT(x0[0], x1[0]) → COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])
COND_574_0_POWER_GT(TRUE, x0[1], x1[1]) → 574_0_POWER_GT(x0[1], /(x1[1], 2))
574_0_POWER_GT(x0[2], x1[2]) → COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])
COND_574_0_POWER_GT1(TRUE, x0[3], x1[3]) → 574_0_POWER_GT(x0[3], -(x1[3], 1))
574_0_POWER_GT(x0[4], x1[4]) → COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])
COND_574_0_POWER_GT3(TRUE, x0[6], x1[6]) → 574_0_POWER_GT(x0[6], /(x1[6], 2))
COND_574_0_POWER_GT4(TRUE, x0[8], x1[8]) → 574_0_POWER_GT(x0[8], -(x1[8], 1))
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(FALSE, FALSE)1
/1 →
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(1) -> (0), if ((x0[1] →* x0[0])∧(x1[1] / 2 →* x1[0]))
(3) -> (0), if ((x0[3] →* x0[0])∧(x1[3] - 1 →* x1[0]))
(6) -> (0), if ((x0[6] →* x0[0])∧(x1[6] / 2 →* x1[0]))
(8) -> (0), if ((x0[8] →* x0[0])∧(x1[8] - 1 →* x1[0]))
(0) -> (1), if ((x1[0] > 1 && !(x0[0] = 2) && 0 = x1[0] % 2 →* TRUE)∧(x0[0] →* x0[1])∧(x1[0] →* x1[1]))
(4) -> (1), if ((x1[4] > 1 && !(x0[4] = 2) && !(x1[4] % 2 = 1) →* TRUE)∧(x0[4] →* x0[1])∧(x1[4] →* x1[1]))
(1) -> (2), if ((x0[1] →* x0[2])∧(x1[1] / 2 →* x1[2]))
(3) -> (2), if ((x0[3] →* x0[2])∧(x1[3] - 1 →* x1[2]))
(6) -> (2), if ((x0[6] →* x0[2])∧(x1[6] / 2 →* x1[2]))
(8) -> (2), if ((x0[8] →* x0[2])∧(x1[8] - 1 →* x1[2]))
(2) -> (3), if ((x1[2] > 0 && !(x1[2] = 1) && !(x0[2] = 2) && 1 = x1[2] % 2 →* TRUE)∧(x0[2] →* x0[3])∧(x1[2] →* x1[3]))
(1) -> (4), if ((x0[1] →* x0[4])∧(x1[1] / 2 →* x1[4]))
(3) -> (4), if ((x0[3] →* x0[4])∧(x1[3] - 1 →* x1[4]))
(6) -> (4), if ((x0[6] →* x0[4])∧(x1[6] / 2 →* x1[4]))
(8) -> (4), if ((x0[8] →* x0[4])∧(x1[8] - 1 →* x1[4]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(1) -> (0), if ((x0[1] →* x0[0])∧(x1[1] / 2 →* x1[0]))
(3) -> (0), if ((x0[3] →* x0[0])∧(x1[3] - 1 →* x1[0]))
(0) -> (1), if ((x1[0] > 1 && !(x0[0] = 2) && 0 = x1[0] % 2 →* TRUE)∧(x0[0] →* x0[1])∧(x1[0] →* x1[1]))
(4) -> (1), if ((x1[4] > 1 && !(x0[4] = 2) && !(x1[4] % 2 = 1) →* TRUE)∧(x0[4] →* x0[1])∧(x1[4] →* x1[1]))
(1) -> (2), if ((x0[1] →* x0[2])∧(x1[1] / 2 →* x1[2]))
(3) -> (2), if ((x0[3] →* x0[2])∧(x1[3] - 1 →* x1[2]))
(2) -> (3), if ((x1[2] > 0 && !(x1[2] = 1) && !(x0[2] = 2) && 1 = x1[2] % 2 →* TRUE)∧(x0[2] →* x0[3])∧(x1[2] →* x1[3]))
(1) -> (4), if ((x0[1] →* x0[4])∧(x1[1] / 2 →* x1[4]))
(3) -> (4), if ((x0[3] →* x0[4])∧(x1[3] - 1 →* x1[4]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(1) -> (0), if ((x0[1] →* x0[0])∧(x1[1] / 2 →* x1[0]))
(3) -> (0), if ((x0[3] →* x0[0])∧(x1[3] - 1 →* x1[0]))
(0) -> (1), if ((x1[0] > 1 && !(x0[0] = 2) && 0 = x1[0] % 2 →* TRUE)∧(x0[0] →* x0[1])∧(x1[0] →* x1[1]))
(4) -> (1), if ((x1[4] > 1 && !(x0[4] = 2) && !(x1[4] % 2 = 1) →* TRUE)∧(x0[4] →* x0[1])∧(x1[4] →* x1[1]))
(1) -> (2), if ((x0[1] →* x0[2])∧(x1[1] / 2 →* x1[2]))
(3) -> (2), if ((x0[3] →* x0[2])∧(x1[3] - 1 →* x1[2]))
(2) -> (3), if ((x1[2] > 0 && !(x1[2] = 1) && !(x0[2] = 2) && 1 = x1[2] % 2 →* TRUE)∧(x0[2] →* x0[3])∧(x1[2] →* x1[3]))
(1) -> (4), if ((x0[1] →* x0[4])∧(x1[1] / 2 →* x1[4]))
(3) -> (4), if ((x0[3] →* x0[4])∧(x1[3] - 1 →* x1[4]))
(1) (&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1)))=TRUE∧x0[4]=x0[1]∧x1[4]=x1[1] ⇒ 574_0_POWER_GT(x0[4], x1[4])≥NonInfC∧574_0_POWER_GT(x0[4], x1[4])≥COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])∧(UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥))
(2) (>(x1[4], 1)=TRUE∧<(%(x1[4], 2), 1)=TRUE∧<(x0[4], 2)=TRUE ⇒ 574_0_POWER_GT(x0[4], x1[4])≥NonInfC∧574_0_POWER_GT(x0[4], x1[4])≥COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])∧(UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥))
(3) (>(x1[4], 1)=TRUE∧<(%(x1[4], 2), 1)=TRUE∧>(x0[4], 2)=TRUE ⇒ 574_0_POWER_GT(x0[4], x1[4])≥NonInfC∧574_0_POWER_GT(x0[4], x1[4])≥COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])∧(UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥))
(4) (x1[4] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧[1] + [-1]x0[4] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)
(5) (x1[4] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧x0[4] + [-3] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)
(6) (x1[4] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧[1] + [-1]x0[4] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)
(7) (x1[4] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧x0[4] + [-3] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)
(9) (x1[4] + [-2] ≥ 0∧max{[2], [-2]} + [-2] ≥ 0∧[1] + [-1]x0[4] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)
(11) (x1[4] + [-2] ≥ 0∧max{[2], [-2]} + [-2] ≥ 0∧x0[4] + [-3] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)
(12) (x1[4] + [-2] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧[4] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)
(13) (x1[4] + [-2] ≥ 0∧x0[4] + [-3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)
(14) (x1[4] + [-2] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧[4] ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)
(15) (x1[4] + [-2] ≥ 0∧x0[4] + [-3] ≥ 0∧[4] ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)
(16) (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧[4] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)
(17) (x1[4] ≥ 0∧x0[4] + [-3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)
(18) (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧[4] ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)
(19) (x1[4] ≥ 0∧x0[4] + [-3] ≥ 0∧[4] ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)
(20) (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)
(21) (x1[4] ≥ 0∧[1] + x0[4] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)
(22) (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)
(23) (x1[4] ≥ 0∧[1] + x0[4] ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)
(24) (x1[4] ≥ 0∧x0[4] ≥ 0∧[4] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)
(25) (x1[4] ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)
(26) (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)
(27) (x1[4] ≥ 0∧[1] + x0[4] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)
(28) (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧0 ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)
(29) (x1[4] ≥ 0∧[1] + x0[4] ≥ 0∧0 ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)
(30) (x1[4] ≥ 0∧x0[4] ≥ 0∧[4] ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)
(31) (x1[4] ≥ 0∧x0[4] ≥ 0∧0 ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)
(32) (&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2)))=TRUE∧x0[2]=x0[3]∧x1[2]=x1[3]∧x0[3]=x0[0]∧-(x1[3], 1)=x1[0] ⇒ COND_574_0_POWER_GT1(TRUE, x0[3], x1[3])≥NonInfC∧COND_574_0_POWER_GT1(TRUE, x0[3], x1[3])≥574_0_POWER_GT(x0[3], -(x1[3], 1))∧(UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥))
(33) (>=(1, %(x1[2], 2))=TRUE∧<=(1, %(x1[2], 2))=TRUE∧>(x1[2], 0)=TRUE∧<(x0[2], 2)=TRUE∧<(x1[2], 1)=TRUE ⇒ COND_574_0_POWER_GT1(TRUE, x0[2], x1[2])≥NonInfC∧COND_574_0_POWER_GT1(TRUE, x0[2], x1[2])≥574_0_POWER_GT(x0[2], -(x1[2], 1))∧(UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥))
(34) (>=(1, %(x1[2], 2))=TRUE∧<=(1, %(x1[2], 2))=TRUE∧>(x1[2], 0)=TRUE∧<(x0[2], 2)=TRUE∧>(x1[2], 1)=TRUE ⇒ COND_574_0_POWER_GT1(TRUE, x0[2], x1[2])≥NonInfC∧COND_574_0_POWER_GT1(TRUE, x0[2], x1[2])≥574_0_POWER_GT(x0[2], -(x1[2], 1))∧(UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥))
(35) ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧[-1]x1[2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(36) ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(37) ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧[-1]x1[2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(38) ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(40) ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧x0[2] + [-3] ≥ 0∧[-1]x1[2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(42) ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧x0[2] + [-3] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(43) (x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] + [-2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(44) (x1[2] + [-1] ≥ 0∧x0[2] + [-3] ≥ 0∧x1[2] + [-2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(45) (x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧[-1] + x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(46) (x1[2] ≥ 0∧x0[2] + [-3] ≥ 0∧[-1] + x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(47) ([1] + x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(48) ([1] + x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(49) ([1] + x1[2] ≥ 0∧[1] + x0[2] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(50) ([1] + x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(51) ([1] + x1[2] ≥ 0∧[1] + x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(52) ([1] + x1[2] ≥ 0∧x0[2] + [-3] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(53) ([1] + x1[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(54) ([1] + x1[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(55) (&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2)))=TRUE∧x0[2]=x0[3]∧x1[2]=x1[3]∧x0[3]=x0[2]1∧-(x1[3], 1)=x1[2]1 ⇒ COND_574_0_POWER_GT1(TRUE, x0[3], x1[3])≥NonInfC∧COND_574_0_POWER_GT1(TRUE, x0[3], x1[3])≥574_0_POWER_GT(x0[3], -(x1[3], 1))∧(UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥))
(56) (>=(1, %(x1[2], 2))=TRUE∧<=(1, %(x1[2], 2))=TRUE∧>(x1[2], 0)=TRUE∧<(x0[2], 2)=TRUE∧<(x1[2], 1)=TRUE ⇒ COND_574_0_POWER_GT1(TRUE, x0[2], x1[2])≥NonInfC∧COND_574_0_POWER_GT1(TRUE, x0[2], x1[2])≥574_0_POWER_GT(x0[2], -(x1[2], 1))∧(UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥))
(57) (>=(1, %(x1[2], 2))=TRUE∧<=(1, %(x1[2], 2))=TRUE∧>(x1[2], 0)=TRUE∧<(x0[2], 2)=TRUE∧>(x1[2], 1)=TRUE ⇒ COND_574_0_POWER_GT1(TRUE, x0[2], x1[2])≥NonInfC∧COND_574_0_POWER_GT1(TRUE, x0[2], x1[2])≥574_0_POWER_GT(x0[2], -(x1[2], 1))∧(UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥))
(58) ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧[-1]x1[2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(59) ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(60) ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧[-1]x1[2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(61) ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(63) ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧x0[2] + [-3] ≥ 0∧[-1]x1[2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(65) ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧x0[2] + [-3] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(66) (x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] + [-2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(67) (x1[2] + [-1] ≥ 0∧x0[2] + [-3] ≥ 0∧x1[2] + [-2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(68) (x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧[-1] + x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(69) (x1[2] ≥ 0∧x0[2] + [-3] ≥ 0∧[-1] + x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(70) ([1] + x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(71) ([1] + x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(72) ([1] + x1[2] ≥ 0∧[1] + x0[2] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(73) ([1] + x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(74) ([1] + x1[2] ≥ 0∧[1] + x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(75) ([1] + x1[2] ≥ 0∧x0[2] + [-3] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(76) ([1] + x1[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(77) ([1] + x1[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(78) (&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2)))=TRUE∧x0[2]=x0[3]∧x1[2]=x1[3]∧x0[3]=x0[4]∧-(x1[3], 1)=x1[4] ⇒ COND_574_0_POWER_GT1(TRUE, x0[3], x1[3])≥NonInfC∧COND_574_0_POWER_GT1(TRUE, x0[3], x1[3])≥574_0_POWER_GT(x0[3], -(x1[3], 1))∧(UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥))
(79) (>=(1, %(x1[2], 2))=TRUE∧<=(1, %(x1[2], 2))=TRUE∧>(x1[2], 0)=TRUE∧<(x0[2], 2)=TRUE∧<(x1[2], 1)=TRUE ⇒ COND_574_0_POWER_GT1(TRUE, x0[2], x1[2])≥NonInfC∧COND_574_0_POWER_GT1(TRUE, x0[2], x1[2])≥574_0_POWER_GT(x0[2], -(x1[2], 1))∧(UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥))
(80) (>=(1, %(x1[2], 2))=TRUE∧<=(1, %(x1[2], 2))=TRUE∧>(x1[2], 0)=TRUE∧<(x0[2], 2)=TRUE∧>(x1[2], 1)=TRUE ⇒ COND_574_0_POWER_GT1(TRUE, x0[2], x1[2])≥NonInfC∧COND_574_0_POWER_GT1(TRUE, x0[2], x1[2])≥574_0_POWER_GT(x0[2], -(x1[2], 1))∧(UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥))
(81) ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧[-1]x1[2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(82) ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(83) ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧[-1]x1[2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(84) ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(86) ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧x0[2] + [-3] ≥ 0∧[-1]x1[2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(88) ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧x0[2] + [-3] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(89) (x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] + [-2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(90) (x1[2] + [-1] ≥ 0∧x0[2] + [-3] ≥ 0∧x1[2] + [-2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(91) (x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧[-1] + x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(92) (x1[2] ≥ 0∧x0[2] + [-3] ≥ 0∧[-1] + x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(93) ([1] + x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(94) ([1] + x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(95) ([1] + x1[2] ≥ 0∧[1] + x0[2] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(96) ([1] + x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(97) ([1] + x1[2] ≥ 0∧[1] + x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(98) ([1] + x1[2] ≥ 0∧x0[2] + [-3] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(99) ([1] + x1[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(100) ([1] + x1[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(101) (&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2)))=TRUE∧x0[2]=x0[3]∧x1[2]=x1[3] ⇒ 574_0_POWER_GT(x0[2], x1[2])≥NonInfC∧574_0_POWER_GT(x0[2], x1[2])≥COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])∧(UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥))
(102) (>=(1, %(x1[2], 2))=TRUE∧<=(1, %(x1[2], 2))=TRUE∧>(x1[2], 0)=TRUE∧<(x0[2], 2)=TRUE∧<(x1[2], 1)=TRUE ⇒ 574_0_POWER_GT(x0[2], x1[2])≥NonInfC∧574_0_POWER_GT(x0[2], x1[2])≥COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])∧(UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥))
(103) (>=(1, %(x1[2], 2))=TRUE∧<=(1, %(x1[2], 2))=TRUE∧>(x1[2], 0)=TRUE∧<(x0[2], 2)=TRUE∧>(x1[2], 1)=TRUE ⇒ 574_0_POWER_GT(x0[2], x1[2])≥NonInfC∧574_0_POWER_GT(x0[2], x1[2])≥COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])∧(UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥))
(104) ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧[-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]x1[2] ≥ 0∧[(-1)bso_23] ≥ 0)
(105) ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]x1[2] ≥ 0∧[(-1)bso_23] ≥ 0)
(106) ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧[-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]x1[2] ≥ 0∧[(-1)bso_23] ≥ 0)
(107) ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]x1[2] ≥ 0∧[(-1)bso_23] ≥ 0)
(109) ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧x0[2] + [-3] ≥ 0∧[-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]x1[2] ≥ 0∧[(-1)bso_23] ≥ 0)
(111) ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧x0[2] + [-3] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]x1[2] ≥ 0∧[(-1)bso_23] ≥ 0)
(112) (x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] + [-2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]x1[2] ≥ 0∧[(-1)bso_23] ≥ 0)
(113) (x1[2] + [-1] ≥ 0∧x0[2] + [-3] ≥ 0∧x1[2] + [-2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]x1[2] ≥ 0∧[(-1)bso_23] ≥ 0)
(114) (x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧[-1] + x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)Bound*bni_22] + [bni_22]x1[2] ≥ 0∧[(-1)bso_23] ≥ 0)
(115) (x1[2] ≥ 0∧x0[2] + [-3] ≥ 0∧[-1] + x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)Bound*bni_22] + [bni_22]x1[2] ≥ 0∧[(-1)bso_23] ≥ 0)
(116) ([1] + x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x1[2] ≥ 0∧[(-1)bso_23] ≥ 0)
(117) ([1] + x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x1[2] ≥ 0∧[(-1)bso_23] ≥ 0)
(118) ([1] + x1[2] ≥ 0∧[1] + x0[2] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x1[2] ≥ 0∧[(-1)bso_23] ≥ 0)
(119) ([1] + x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x1[2] ≥ 0∧[(-1)bso_23] ≥ 0)
(120) ([1] + x1[2] ≥ 0∧[1] + x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x1[2] ≥ 0∧[(-1)bso_23] ≥ 0)
(121) ([1] + x1[2] ≥ 0∧x0[2] + [-3] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x1[2] ≥ 0∧[(-1)bso_23] ≥ 0)
(122) ([1] + x1[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x1[2] ≥ 0∧[(-1)bso_23] ≥ 0)
(123) ([1] + x1[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x1[2] ≥ 0∧[(-1)bso_23] ≥ 0)
(124) (&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2)))=TRUE∧x0[0]=x0[1]∧x1[0]=x1[1] ⇒ COND_574_0_POWER_GT(TRUE, x0[1], x1[1])≥NonInfC∧COND_574_0_POWER_GT(TRUE, x0[1], x1[1])≥574_0_POWER_GT(x0[1], /(x1[1], 2))∧(UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥))
(125) (>(x1[0], 1)=TRUE∧>=(0, %(x1[0], 2))=TRUE∧<=(0, %(x1[0], 2))=TRUE∧<(x0[0], 2)=TRUE ⇒ COND_574_0_POWER_GT(TRUE, x0[0], x1[0])≥NonInfC∧COND_574_0_POWER_GT(TRUE, x0[0], x1[0])≥574_0_POWER_GT(x0[0], /(x1[0], 2))∧(UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥))
(126) (>(x1[0], 1)=TRUE∧>=(0, %(x1[0], 2))=TRUE∧<=(0, %(x1[0], 2))=TRUE∧>(x0[0], 2)=TRUE ⇒ COND_574_0_POWER_GT(TRUE, x0[0], x1[0])≥NonInfC∧COND_574_0_POWER_GT(TRUE, x0[0], x1[0])≥574_0_POWER_GT(x0[0], /(x1[0], 2))∧(UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥))
(127) (x1[0] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧[1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x1[0] ≥ 0∧[1 + (-1)bso_28] + x1[0] + [-1]max{x1[0], [-1]x1[0]} ≥ 0)
(128) (x1[0] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧x0[0] + [-3] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x1[0] ≥ 0∧[1 + (-1)bso_28] + x1[0] + [-1]max{x1[0], [-1]x1[0]} ≥ 0)
(129) (x1[0] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧[1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x1[0] ≥ 0∧[1 + (-1)bso_28] + x1[0] + [-1]max{x1[0], [-1]x1[0]} ≥ 0)
(130) (x1[0] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧x0[0] + [-3] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x1[0] ≥ 0∧[1 + (-1)bso_28] + x1[0] + [-1]max{x1[0], [-1]x1[0]} ≥ 0)
(131) (x1[0] + [-2] ≥ 0∧[1] + [-1]x0[0] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[2]x1[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x1[0] ≥ 0∧[1 + (-1)bso_28] ≥ 0)
(132) (x1[0] + [-2] ≥ 0∧x0[0] + [-3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[2]x1[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x1[0] ≥ 0∧[1 + (-1)bso_28] ≥ 0)
(133) (x1[0] ≥ 0∧[1] + [-1]x0[0] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[0] ≥ 0∧[1 + (-1)bso_28] ≥ 0)
(134) (x1[0] ≥ 0∧x0[0] + [-3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[0] ≥ 0∧[1 + (-1)bso_28] ≥ 0)
(135) (x1[0] ≥ 0∧[1] + [-1]x0[0] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[0] ≥ 0∧[1 + (-1)bso_28] ≥ 0)
(136) (x1[0] ≥ 0∧[1] + x0[0] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[0] ≥ 0∧[1 + (-1)bso_28] ≥ 0)
(137) (x1[0] ≥ 0∧[1] + [-1]x0[0] ≥ 0∧x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[0] ≥ 0∧[1 + (-1)bso_28] ≥ 0)
(138) (x1[0] ≥ 0∧[1] + x0[0] ≥ 0∧x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[0] ≥ 0∧[1 + (-1)bso_28] ≥ 0)
(139) (x1[0] ≥ 0∧x0[0] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[0] ≥ 0∧[1 + (-1)bso_28] ≥ 0)
(140) (x1[0] ≥ 0∧x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[0] ≥ 0∧[1 + (-1)bso_28] ≥ 0)
(141) (&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1)))=TRUE∧x0[4]=x0[1]∧x1[4]=x1[1] ⇒ COND_574_0_POWER_GT(TRUE, x0[1], x1[1])≥NonInfC∧COND_574_0_POWER_GT(TRUE, x0[1], x1[1])≥574_0_POWER_GT(x0[1], /(x1[1], 2))∧(UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥))
(142) (>(x1[4], 1)=TRUE∧<(%(x1[4], 2), 1)=TRUE∧<(x0[4], 2)=TRUE ⇒ COND_574_0_POWER_GT(TRUE, x0[4], x1[4])≥NonInfC∧COND_574_0_POWER_GT(TRUE, x0[4], x1[4])≥574_0_POWER_GT(x0[4], /(x1[4], 2))∧(UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥))
(143) (>(x1[4], 1)=TRUE∧<(%(x1[4], 2), 1)=TRUE∧>(x0[4], 2)=TRUE ⇒ COND_574_0_POWER_GT(TRUE, x0[4], x1[4])≥NonInfC∧COND_574_0_POWER_GT(TRUE, x0[4], x1[4])≥574_0_POWER_GT(x0[4], /(x1[4], 2))∧(UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥))
(144) (x1[4] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧[1] + [-1]x0[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] + x1[4] + [-1]max{x1[4], [-1]x1[4]} ≥ 0)
(145) (x1[4] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧x0[4] + [-3] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] + x1[4] + [-1]max{x1[4], [-1]x1[4]} ≥ 0)
(146) (x1[4] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧[1] + [-1]x0[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] + x1[4] + [-1]max{x1[4], [-1]x1[4]} ≥ 0)
(147) (x1[4] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧x0[4] + [-3] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] + x1[4] + [-1]max{x1[4], [-1]x1[4]} ≥ 0)
(149) (x1[4] + [-2] ≥ 0∧max{[2], [-2]} + [-2] ≥ 0∧[1] + [-1]x0[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] + x1[4] + [-1]max{x1[4], [-1]x1[4]} ≥ 0)
(151) (x1[4] + [-2] ≥ 0∧max{[2], [-2]} + [-2] ≥ 0∧x0[4] + [-3] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] + x1[4] + [-1]max{x1[4], [-1]x1[4]} ≥ 0)
(152) (x1[4] + [-2] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2]x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] ≥ 0)
(153) (x1[4] + [-2] ≥ 0∧x0[4] + [-3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2]x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] ≥ 0)
(154) (x1[4] + [-2] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧[2]x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] ≥ 0)
(155) (x1[4] + [-2] ≥ 0∧x0[4] + [-3] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧[2]x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] ≥ 0)
(156) (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] ≥ 0)
(157) (x1[4] ≥ 0∧x0[4] + [-3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] ≥ 0)
(158) (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧[4] + [2]x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] ≥ 0)
(159) (x1[4] ≥ 0∧x0[4] + [-3] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧[4] + [2]x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] ≥ 0)
(160) (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[4] ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] ≥ 0)
(161) (x1[4] ≥ 0∧[1] + x0[4] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[4] ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] ≥ 0)
(162) (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] ≥ 0)
(163) (x1[4] ≥ 0∧[1] + x0[4] ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] ≥ 0)
(164) (x1[4] ≥ 0∧x0[4] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] ≥ 0)
(165) (x1[4] ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] ≥ 0)
(166) (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧[4] + [2]x1[4] ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] ≥ 0)
(167) (x1[4] ≥ 0∧[1] + x0[4] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧[4] + [2]x1[4] ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] ≥ 0)
(168) (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧0 ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0∧[2] + x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] ≥ 0)
(169) (x1[4] ≥ 0∧[1] + x0[4] ≥ 0∧0 ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0∧[2] + x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] ≥ 0)
(170) (x1[4] ≥ 0∧x0[4] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧[4] + [2]x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] ≥ 0)
(171) (x1[4] ≥ 0∧x0[4] ≥ 0∧0 ≥ 0∧[1] ≥ 0∧[2] + x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] ≥ 0)
(172) (&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2)))=TRUE∧x0[0]=x0[1]∧x1[0]=x1[1] ⇒ 574_0_POWER_GT(x0[0], x1[0])≥NonInfC∧574_0_POWER_GT(x0[0], x1[0])≥COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])∧(UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥))
(173) (>(x1[0], 1)=TRUE∧>=(0, %(x1[0], 2))=TRUE∧<=(0, %(x1[0], 2))=TRUE∧<(x0[0], 2)=TRUE ⇒ 574_0_POWER_GT(x0[0], x1[0])≥NonInfC∧574_0_POWER_GT(x0[0], x1[0])≥COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])∧(UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥))
(174) (>(x1[0], 1)=TRUE∧>=(0, %(x1[0], 2))=TRUE∧<=(0, %(x1[0], 2))=TRUE∧>(x0[0], 2)=TRUE ⇒ 574_0_POWER_GT(x0[0], x1[0])≥NonInfC∧574_0_POWER_GT(x0[0], x1[0])≥COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])∧(UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥))
(175) (x1[0] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧[1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[(-1)bni_29 + (-1)Bound*bni_29] + [bni_29]x1[0] ≥ 0∧[(-1)bso_30] ≥ 0)
(176) (x1[0] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧x0[0] + [-3] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[(-1)bni_29 + (-1)Bound*bni_29] + [bni_29]x1[0] ≥ 0∧[(-1)bso_30] ≥ 0)
(177) (x1[0] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧[1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[(-1)bni_29 + (-1)Bound*bni_29] + [bni_29]x1[0] ≥ 0∧[(-1)bso_30] ≥ 0)
(178) (x1[0] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧x0[0] + [-3] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[(-1)bni_29 + (-1)Bound*bni_29] + [bni_29]x1[0] ≥ 0∧[(-1)bso_30] ≥ 0)
(179) (x1[0] + [-2] ≥ 0∧[1] + [-1]x0[0] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[(-1)bni_29 + (-1)Bound*bni_29] + [bni_29]x1[0] ≥ 0∧[(-1)bso_30] ≥ 0)
(180) (x1[0] + [-2] ≥ 0∧x0[0] + [-3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[(-1)bni_29 + (-1)Bound*bni_29] + [bni_29]x1[0] ≥ 0∧[(-1)bso_30] ≥ 0)
(181) (x1[0] ≥ 0∧[1] + [-1]x0[0] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[bni_29 + (-1)Bound*bni_29] + [bni_29]x1[0] ≥ 0∧[(-1)bso_30] ≥ 0)
(182) (x1[0] ≥ 0∧x0[0] + [-3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[bni_29 + (-1)Bound*bni_29] + [bni_29]x1[0] ≥ 0∧[(-1)bso_30] ≥ 0)
(183) (x1[0] ≥ 0∧[1] + [-1]x0[0] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[bni_29 + (-1)Bound*bni_29] + [bni_29]x1[0] ≥ 0∧[(-1)bso_30] ≥ 0)
(184) (x1[0] ≥ 0∧[1] + x0[0] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[bni_29 + (-1)Bound*bni_29] + [bni_29]x1[0] ≥ 0∧[(-1)bso_30] ≥ 0)
(185) (x1[0] ≥ 0∧[1] + [-1]x0[0] ≥ 0∧x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[bni_29 + (-1)Bound*bni_29] + [bni_29]x1[0] ≥ 0∧[(-1)bso_30] ≥ 0)
(186) (x1[0] ≥ 0∧[1] + x0[0] ≥ 0∧x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[bni_29 + (-1)Bound*bni_29] + [bni_29]x1[0] ≥ 0∧[(-1)bso_30] ≥ 0)
(187) (x1[0] ≥ 0∧x0[0] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[bni_29 + (-1)Bound*bni_29] + [bni_29]x1[0] ≥ 0∧[(-1)bso_30] ≥ 0)
(188) (x1[0] ≥ 0∧x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[bni_29 + (-1)Bound*bni_29] + [bni_29]x1[0] ≥ 0∧[(-1)bso_30] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = [1]
POL(574_0_POWER_GT(x1, x2)) = [-1] + x2
POL(COND_574_0_POWER_GT(x1, x2, x3)) = [-1] + x3
POL(&&(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(1) = [1]
POL(!(x1)) = [-1]
POL(=(x1, x2)) = [-1]
POL(2) = [2]
POL(COND_574_0_POWER_GT1(x1, x2, x3)) = [-1] + x3
POL(-(x1, x2)) = x1 + [-1]x2
POL(0) = 0
Polynomial Interpretations with Context Sensitive Arithemetic Replacement
POL(TermCSAR-Mode @ Context)
POL(%(x1, 2)-1 @ {}) = min{x2, [-1]x2}
POL(%(x1, 2)1 @ {}) = max{x2, [-1]x2}
POL(/(x1, 2)1 @ {574_0_POWER_GT_2/1}) = max{x1, [-1]x1} + [-1]
COND_574_0_POWER_GT1(TRUE, x0[3], x1[3]) → 574_0_POWER_GT(x0[3], -(x1[3], 1))
COND_574_0_POWER_GT(TRUE, x0[1], x1[1]) → 574_0_POWER_GT(x0[1], /(x1[1], 2))
574_0_POWER_GT(x0[4], x1[4]) → COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])
COND_574_0_POWER_GT1(TRUE, x0[3], x1[3]) → 574_0_POWER_GT(x0[3], -(x1[3], 1))
574_0_POWER_GT(x0[2], x1[2]) → COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])
COND_574_0_POWER_GT(TRUE, x0[1], x1[1]) → 574_0_POWER_GT(x0[1], /(x1[1], 2))
574_0_POWER_GT(x0[0], x1[0]) → COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])
574_0_POWER_GT(x0[4], x1[4]) → COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])
574_0_POWER_GT(x0[2], x1[2]) → COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])
574_0_POWER_GT(x0[0], x1[0]) → COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])
FALSE1 → &&(FALSE, FALSE)1
/1 →
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer